
PSYCHOGEAR, YET ANOTHER PSYCHOPHYSICS LIBRARY

Diego Dall’Alba, Marco Vicentini, and Debora Botturi
Computer Science Department, University of Verona, Verona, Italy

{dallalba, vicentini, botturi}@metropolis.sci.univr.it

Abstract

This paper presents PsychoGear, a new library of psychophysics methods, which can sup-
plements haptic, visual, and audio stimuli. We have developed a modular framework that
arises from the decomposition of an experiment in a series of psychophysics methods,
each one composed of a variable number of trials. Constant stimuli, staircases, QUEST,
PEST, and Maximum Likelihood adaptive procedures for psychophysics measurement are
natively implemented in our library. Implementation details such as trial presentation,
stopping rules, generation of the next stimulus, and data collection are natively handled
by the framework. By this way the user (researcher or student) can be concentrated on the
design of the experiment. Our library is very easy to use with simple and efficient C++
code, or with a dedicated GUI to create a XML configuration file of the entire experiment.

Only few works in the literature bring together physiological, perceptual and cognitive
factors, such as velocity, force, reaction time, mental workload, EMG measurement, and
transmission delay. The main reason is that experiments testing a number of factors are
not trivial, and the design implementation has to carefully take over the synchronization
and the interface between different stimuli. We have experienced the difficulties to imple-
ment a multi-factorial experimental design, even harder when the subject has to interact
with the environment where there are noisy sensors, delayed stimuli and complex devices.
Recent experiments (Vicentini & Botturi, 2008) show the needs of multi-factorial design,
in which several cognitive factors have to be evaluated in order to model the human
perception in haptic system.

We are working on the development of a new psychophysics library to control all the
aspects of the experimental setup, maintaining the rigor of the psychophysics methodology
within an haptic system. The library will be able to control the experiments by governing
stimuli generation and synchronization, data acquisition from different sensorial channels
and data logging.

Our approach follows the research line described in Anderson (2001), that is, to com-
bine multiple psychophysics measurements within a full factorial design. We are working
on a modular approach that arises from the decomposition of an experiment in a series
of psychophysics methods, each one composed by a variable number of trials. For each
trial we consider the presentation of a stimulus, the hardware source, the psychophysics
procedure type (classical or adaptive) and the logging of the subject’s response.

The focus of the approach described is on the infrastructure, not on a specific method.
We want to provide a framework in which including a new experimental method is quick
and easy. The user can define the design and choose the parameters without dealing
with the underlying code because we have decoupled the programming phase from the
utilization one.

Moreover, we pursue the code reusability and all the implementations such as trials,

453

Experiment

Method

Tracking Stopping State Trial

Stymulus Response Logger

Method ...

Figure 1: Experimental Psychophysics Library Object Hierarchy.

stopping rules, generation of the next stimulus, and data collection are stored in the
framework.

With this library the user can concentrate on the design of the experiment putting
together methods he/she needs, the programmer can rely on the framework to implement
new details, without even know the psychophysiscs purpose. Finally, we point out in this
library the possibility to have multi-factorial design and, an easy device integration.

PsychoGear

Starting from the ideas of the Psychophysics Toolbox (Brainard, 1997) for MATLAB, the
PsychoPy–Psychophysics software in Python (Peirce, 2007), and the GroovX framework
(Peters, 2008), we are looking at providing new classes and methods to cover several as-
pects, from stimulus presentation and response collection, using at the same time classical
and adaptive procedures, to data analysis, such as psychometric function fitting.

The library code is written in C++ and it works directly under the most common
operating system (Linux, Mac OSX, and Windows). The component interface and the
code management are very simple, therefore the implementation of new parts is straight-
forward even for programmers with little experience. Our framework supports C-style
code, very useful when dealing with hardware devices; it also supports high level features,
such as data abstractions and object-oriented programming.

The modular structure allows an easy software maintenance and debug. We use com-
piled code, also because it is faster than the interpreted, thus real-time is possible, even
in highly complex cases, such as haptic experiments with multi-modal stimuli.

The major effort in the library development is the management of haptic experiments,
that is possible to consider as a broad class that include the visual experiments. We sup-
port multi-factorial design, hardware independency and component exchange and differ-
ent type of stimuli and responses. Therefore the library is able to visualize visual stimuli,
supports different haptic devices and, can communicate with further devices through a
generic TCP communication protocol.

The basic set of components for a psychophysics paradigm is made of an update rule
for the characteristics of the stimulus, which should balance between different dynamic
parameters, and a stopping criterion. Hence, if the rules of the experiments are set out,
there is no need for complicated control procedures and the execution control can be very
simple. Moreover, in literature we can find a limited number of tracking strategies and
stop rules, thus we ensured that once implemented it is possible to easily reuse them in
any experiment.

With our library, once a psychophysics method has been implemented, it can be

454

Method

MethodType

Init():void
Next():void
newTrial():void
Done():bool

Experiment

ExperimentType

Add(Method met):void
GetMethod(intid):Method
GetCurrent():Method
SetCurrent(int id):void
Finished():bool

ExperimentBuilder

ConfigFile

Create(Filename):void
Build():Experiment

1..n

Trial

Check:bool
Valid:bool

Init():void
Check():bool
Execute():void
getResponse():void
Validate():bool
isDone():bool

1..n

Stymulus

StymulusType

Init():void
Presentation():void

Response

ResponseType

Init():void
InitLog():void
SendResponse():void

Logger

LoggerType

Init():void
InitTime():void
Print():void
Export():void

Tracking

StymulusType

Init():void
Next():double

Stopping

StymulusType

Init():void
isDone():bool

State(Parameters)

LoggerType MaxInten-
sity:double
minIntensity:double
MaxNTrials:int
CurrentIntensity:double

Init():void
SetCurIntensity():void
GetCurIntensity():double
SetMin(double
min):double
setMax(double
max):double
printInfo():void
SetNtrial(int
nmax):void
GetNtrial():int

Mathtool

PsychoMetricFunc

Figure 2: Experimental Psychophysics Library UML Class Diagram.

reused in a totally different scenario, with others methods, criteria and devices by simply
instantiating a new set of objects. We provide the implementation of the most common
psychophysics paradigm, the ones discussed in (Leek, 2001), and we count on the sharing
of classes between users.

A stimulus presentation always requires some low level code, that communicates with
the hardware device. In our library the support for each type of hardware device is of
immediate use and only a new Stymulus class has to be developed. The use of the library
is twofold: the implementation of the classes and the use of them. The coding part
requires programming capabilities (i.e. a “programmer”), the use focuses on the choice
of proper parameter values.

Class Structure

In Fig. 1 we show the object hierarchy: an Experiment contains an arbitrary number of
methods. Each Method contains a State class, which contains all the parameters needed
for a correct execution of all the sub-component, a Tracking class, that controls the stimuli
intensities, a Stopping class, that checks the end of the method, and a Trial class. Trial is
composed by a Stymulus class, which deals with stimulus presentation, a Response which
collects user responses and a Logger for data logging. Fig. 2 depicts a simplified UML
class diagram drawing the PsychoGear framework. Each class has a simple and easy to
use interface.

The main component of this framework is the Method class that supervises all the
different control aspects of the experiment procedure. We have to present a sequence of
stimulus intensities, that are known a priori or settled at run time, and for this purpose
the Tracking class gives basic commands to control the evolution of the stimuli in the
procedure. A very important aspect is the procedure ending management. The Stop-
ping subclass checks the end of the procedure and also allows to easily change between
different stopping rules. Moreover following the psychophysics definition, Trial class is
implemented with a Stymulus subclass, that manages the stimulus presentation, and a Re-

455

(a) Experiment initial setup (b) ML method parameters tuning

Figure 3: Views of the graphical user interface to create XML configuration file

sponse subclass, which controls the responses acquisition. In addition, a Logger subclass
is implemented to save all the meaningful parameters that describe user performances.

Besides the psychophysics procedure uses some statistical tools, for example probabil-
ity distribution and random number generator, therefore the Mathtool class is implemented
to contain all the auxiliary mathematical functions.

It is common to design a real experiment which involves more than a single psy-
chophysics procedure (for example, two staircase procedures with random stimulus pre-
sentation). So we need to control which procedure has to be executed, how many trials
have to be presented, when the entire experiment finishes. To manage this type of de-
sign, the Experiment class manages different methods defining a global end criteria and
a switching rule between methods in every step of stimulus presentation. The specific
parameters of the classes involved in the experiment are stored in the State class. This
class contains all the parameters in the same place, so it is easy for every sub-class to
access useful sharable information.

When an experiment is clearly designed, it may be seen as a set of psychophysics proce-
dures and parameters (i.e. stimulus intensities, starting values, stopping rule, presentation
time). Especially during the pilot testing, the user needs to tune some parameters to fit
the current design to the goal of her/his study.

To make this operations easier, we set a unique XML configuration file, where the
user can easily choose the components and set the parameters of the experiment. The
ExperimentBuilder class reads the configuration file and initializes the experiment with
the correct sub-classes and parameters.

456

Features

Typically, building and managing an experiments requires to write hundreds lines of code.
Our library permits to obtain the same result with few XML lines.

A frequent problem is that parameters of the experiment are spread all over the code,
making the section decouple more difficult. In our framework, thanks to the modularity
and the global parameters setting, each extension can be implement with minimal mod-
ifications to the existing component, and the modification is always limited to a precise
set of components.

Once the main classes are developed, the experiment execution and control is very
simple and it needs few line of code, as you can see in the next example:

int main ()
{

// Create an Experiment Bui lder wi th the proper con f i g u ra t i on f i l e
ExperimentBuilder bu i l d e r (”CONFIG.XML”) ;
// Create Experiment from parameters in con f i g f i l e
Experiment ∗exp = bu i l d e r . Bui ld () ;
Method ∗ cur ;
//Execute Experiment wh i l e f i n i s h i s not reached
while (! (exp −>Fin i shed ()))
{

// S e l e c t the curren t method
cur = exp−>GetCurrent () ;
//Execute a l l t r i a l s
while (cur−>isDone ())
{

// New t r i a l from current method
cur −> newTrial () ;
// Invoke t r a k i n g a l gor i thm to r e f r e s h curren t method parameters
cur −> Next () ;

}
}

}

Parameters can be adjusted with no code change or code recompilation. A typical method
to define the experimental parameters is to use a plain text file, in which storing the needed
information. A XML file is the closest solution to a plain text, but it also provides a clear
description of each inserted parameter; a XML file increases the readability and makes
easier changes and updates. Indeed, the XML configuration file stores all the parameters
needed for correct execution and with a simple text editor it is possible to change them.

We also provide an intuitive graphical user interface to create XML configuration file
in a simple e comfortable way. The interface guides the user in the creation of complex
experimental setup with a step by step procedure, that helps to choose the correct com-
ponent and suitable parameters. In Fig. 3(a) we show an initial experiment setup where
users can load a previously created XML file or insert a new experiment, author and, sub-
jects informations. In Fig. 3(b) we show a configuration form for Maximum Likelihood
method parameters (in the example we have an Experiment with three different methods,
i.e. constant stimuli, ML and staircase).

457

Discussion

In this paper we have presented a psychophysics library that proposes an easy to use
structure, taking advantage from the experience of other implementations and the needs
of the haptic perception experiments. The novelty of this library is the native manage-
ment of the psychophysics procedures and of the haptic system; moreover some problems
from the existing libraries are solved in this implementation ensuing the software engi-
neeing suggestions (i.e. object oriented code organization, haptic device support). The
library architecture is meaningful for the organization and the development of every ex-
perimental design,which is even more important in haptic research, given the complexity
of the experiments designs.

In the near future we plan to extend the implementation of the basic components,
adding, for example, the support for all the fundamental adaptive methods. Once a wide
set of example will be developed we will use them as an “how to” for our library, to allow
an easy and fast startup time for new users.

We are planning to widen the hardware device support and to improve their integration
with other source of stimulus devices, i.e. audio/video, with a unified synchronization
protocol. We are also introducing support for OpenGL to improve the rendering of visual
stimuli, and we are working on support for OpenCL to obtain faster parallel computation
(i.e. in psychophysic functions fitting evaluation). Moreover our graphical user interface
will be improved implementing the drag and drop of the components during the creation
procedure and allowing the real–time managment of the experiment execution, broadening
the PsychoGear library use.

Acknowledgments

This work was partially founded by the AccuRobAs project under EU’s 6th Framework
Programme (contract IST-045201).

References

Anderson, N. H. (2001). Empirical direction in design and analysis. Mahwah, NY:
Lawrence Erlbaum Associates.

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10 , 433-436.
Leek, M. R. (2001). Adaptive procedures in psychophysical research. Perception &

Psychophisics , 63 (8), 1279-1292.
Peirce, J. W. (2007). PsychoPy-Psychophysics software in Python. Journal of Neuro-

science Methods , 162 (1-2), 8-13.
Peters, R. J. (2008). The groovx framework v. 1.0a1. Retrieved July 21st, 2008, from

http://ilab.usc.edu/rjpeters/groovx/

Vicentini, M., & Botturi, D. (2008). Overshoot effect in stiffness perception tasks during
hand motion with haptic device. In M. Ferre (Ed.), Haptics: Perception, devices
and scenarios (Vol. 5024/2008, p. 189-198). Berlin: Springer.

458

