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Abstract

The proximity principle is a fundamental fact of spatial vision. It has been a cornerstone of the
Gestalt approach to perception, it is supported by overwhelming empirical evidence, and its utility
has been proven in studies of the “ecological statistics” of optical stimulation. We show that the
principle fails in the perception of motion, which means that the standard (Minkowski) notion of
proximity does not apply to the perceptual combination of space and time the way it applies to the
combination of spatial dimensions in perceptual organization of static scenes. We demonstrate that
in perception of motion the proximity principle should be supplanted by a more general notion – the
equilibrium principle – which is related to the minimum principle championed by the Gestaltists.

Introduction

The proximity principle is an empirical law that holds in the perception of static scenes (Wertheimer,
1923; Hochberg & Silverstein, 1956; Oyama, 1961; Kubovy, Holcombe, & Wagemans, 1998): the
closer elements of a scene to one another, the more likely it is that they will appear parts of the same
object. Studies of the statistics of natural images have revealed its ecological utility: Image regions
(or “elements”) from one object are likely to be closer to each other than elements from different
objects (Brunswik & Kamiya, 1953; Geisler, Perry, Super, & Gallogly, 2001; Elder & Goldberg,
2002).

Here we show that the principle does not generalize to dynamic scenes, i.e., no spatiotemporal
proximity principle governs the perception of motion. In other words, elements of a dynamic display
separated by short spatiotemporal distances do not appear as parts of the same object more readily
than elements separated by longer spatiotemporal distances. We demonstrate this in three steps.
First, we examine how spatial dimensions combine in grouping by spatial proximity. Second, we
ask what consequences it would have for the perception of motion if space and time had combined
similarly, i.e., if a spatiotemporal proximity principle held. Then, we show that the predictions
from proximity hold only for some conditions of motion perception, which means that a proximity
principle is not a general rule for the perceptual space-time. This result is consistent with other
results on motion perception and with a normative theory of motion perception.

The structure of spatial proximity

In Fig. 1A we show a spatial dot lattice, which is a multistable visual stimulus. Human observers
see the dots spontaneously group into strips, and the perceived groupings change while the stimulus
does not change. The multistable perception of dot lattices is lawful (Kubovy et al., 1998). Thus,
when spatial distances between elements along vectors a and b are equal, the probabilities of seeing
the dots organize into strips parallel to a and b are approximately equal.1 In other words, the two
organizations are in perceptual equilibrium.

To illustrate the metric structure of grouping by spatial proximity, let us embed the lattice in a
pair of orthogonal axes K and L in the plane, so the projections of vectors a and b on these axes are
aK , aL, and bK , bL (Fig. 1A). Suppose we can independently manipulate the projections until we

1For simplicity, we disregard orientation biases in perceptual grouping (Gepshtein & Kubovy, 2005).



Figure 1. Tradeoff of distance components. A. In a dot lattice
the competing organizations are seen equally often if the vectors
that define them, a and b, are equally long. B. Vector a can be
rotated to obtain segment b: δE(a) = δE(b), where the Euclidean
distances are δE(a) =

√
a2

K + a2
L and δE(b) =

√
b2
K + b2

L, aK and
aL are the projections of segment a, and bK and bL are projections
of segment b. To maintain the distance, increasing the projection
of a vector on axis K (from aK to bK) must be accompanied
by decreasing its projection on axis L (from aL to bL), i.e., the
two projections must trade off. This invariance of distance under
rotation does not generalize to other power metrics (Appendix),
whereas the tradeoff of distance components does.
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obtain the equality of distances. We will be able to equate the distances only when the projections
trade off their lengths, i.e., when one of the two conditions holds:

aK > bK and aL < bL

or
aK < bK and aL > bL.

In words, to achieve the same distance (the same spatial proximity) between elements along different
orientations in space, we must increase the projection of this distance on one spatial dimension and
decrease the projection on the other dimension (Fig. 1B). We call this property tradeoff of distance
components. We formulate it explicitly in the Appendix. Now we apply this argument to space-time.

Regimes of motion perception

Suppose one of the two dimensions in Fig. 1 is time. To sustain the equality of distances in the
two-dimensional space-time, the spatial and temporal components of spatiotemporal distance will
have to trade off, just as they did in space. Thus, to maintain the same spatiotemporal distance,
increasing the spatial distance between the elements will have to be accompanied by decreasing the
temporal distance, and decreasing the spatial distance will have to be accompanied by increasing
the temporal distance.

It turns out that only some of the results on motion perception are consistent with this prediction.
We illustrate this using a simple case of perceptual multistability in an apparent motion display
(Fig. 2). Three short-lived dots sequentially appear and disappear at three loci: O, A, and B, so
that O has two potential matches: at A and B. We denote the potential motion paths from O to
A and from O to B by ma and mb. (For simplicity, suppose the distance between A and B is
long, and motion from A to B is unlikely.) Each path has a temporal component (Ta, Tb) and a
spatial component (Sa, Sb), so in a plot of distances in Fig. 2B each motion path is represented
by a point. Suppose we manipulate Sb (double-headed arrow in Fig. 2B), while holding constant
all other parameters (Sa, Ta and Tb), such that Tb = 2Ta. We determine the value of Sb for which
the probabilities of competing motions are equal. If the equilibrium obtains at Sb < Sa (space-time
tradeoff) then we found evidence supporting the proximity principle in space-time, but if we find
equilibrium at Sb > Sa (space-time coupling) then we find support to the claim that the proximity
principle does not generalize to space-time.2 Both possibilities are supported by empirical evidence.

2Generally, Sb ≥ Sa is evidence against a proximity principle in space-time. See Gepshtein and Kubovy (2007) for
a discussion of the regime of time independence, Sb = Sa.
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Figure 2. Regimes of apparent motion. A. A stimulus for ambiguous apparent motion. Element O has two
potential matches, A and B, giving rise to potential motion paths ma and mb. B. Plot of spatial and temporal
distances (“distance plot”) where each motion path is represented by a point {Ti, Si}. The double-headed arrow
represents the manipulation used by Gepshtein & Kubovy (2007) who varied Sb to find the conditions of perceptual
equilibrium between the competing motion paths. The qualitatively distinct outcomes of this manipulation are
space-time tradeoff 1© and coupling 2©. Tradeoff is consistent with a proximity metric but coupling is not. Note
that the regimes of tradeoff and coupling correspond to, respectively, negative and positive slopes of the lines
connecting the conditions of equilibrium.

The classical Korte’s Third Law of Motion (Korte, 1915; Koffka, 1935/1963) is an instance of space-
time coupling, and the results of Burt and Sperling (1981) is an instance of space-time tradeoff.

Using the manipulation represented by the double-headed arrow in Fig. 2B, Gepshtein and
Kubovy (2007) measured the conditions of perceptual equilibrium under multiple spatial and tem-
poral scales of multistable apparent motion. The authors found evidence of both regimes of tradeoff
and coupling in the same stimulus. Tradeoff was found at low speeds of motion, but it gradually
changed to the regime of coupling as the speed grew.

Gepshtein and Kubovy (2007) also showed that the gradual transition was consistent with other
results on motion perception (Nakayama, 1985), including a comprehensive characteristic of visual
sensitivity to continuous motion (Kelly, 1979). We illustrate this in Fig. 3B, where we plot human
isosensitivity contours along which the visual system is equally sensitive to spatiotemporal modula-
tions of luminance. Note that the slopes of contours change systematically across the distance plot.
Thus, if the ability to see apparent motion related monotonically to the ability to detect contin-
uous motion (we dispense with this assumption below), one could predict the different regimes of
apparent motion under different conditions of stimulation from the shapes of isosensitivity contours.

Equilibrium theory of motion perception

Gepshtein, Tyukin, & Kubovy (2007) proposed a normative theory of motion perception that ex-
plains why the isosensitivity contours have the shapes they do and why the different regimes of
apparent motion hold under different conditions of stimulation. By this theory, the reliability of
motion measurement depends on the balance of two kinds of uncertainty: (i) measurement uncer-
tainty, which is a consequence of the uncertainty principle of measurement (Gabor, 1946), and which
affects any measurement, not only visual or biological, and (ii) stimulus uncertainty, which depends
on the statistical properties of stimulation. Specifically, Gepshtein et al. demonstrated the following.

1. The hyperbolic shape of the maximal sensitivity set (the gray curve in Fig. 3B) is a conse-
quence of the uncertainty principle of measurement. For every point of this set, the spatial and
temporal measurement uncertainties are balanced exactly.

2. Outside of the maximal-sensitivity set, there exist equivalence classes (or equivalence contours)
of uncertainty where the measurement uncertainty and stimulus uncertainty are imbalanced to the
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Figure 3. Equivalence classes of motion perception. A. The
pairs of red connected circles represent the pairs of conditions
of apparent motion that were seen equally often in the multi-
stable displays of Gepshtein and Kubovy (2007). The thin lines
on the background are the empirical equivalence contours of ap-
parent motion derived by Gepshtein & Kubovy from the pairwise
equilibria. The slopes of these contours gradually change across
the plot, indicating a gradual change from the regime of trade-
off (negative slope) to the regime of coupling (positive slope), in
qualitative agreement with predictions of the equilibrium theory
(Gepshtein, Tyukin, & Kubovy, 2007). B. Human isosensitivity
contours (Kelly, 1979) converted into the distance plot. The grey
hyperbolic curve is the set of maximal spatiotemporal sensitivity.
The rectangle marks the region of conditions in which Gepshtein
& Kubovy could find the points of equilibrium of apparent mo-
tion. The slopes of isosensitivity contours gradually change across
conditions as do the slopes of equivalence contours of apparent
motion in panel A.

same degree, which is why the conditions that make up the equivalence classes are equally suboptimal
(equally suitable) for motion measurement. The shapes of these equivalence classes in the space of
parameters are determined by the degree of balance of uncertainties.

In other words, from the normative considerations it follows that whether tradeoff or coupling
are expected at a particular condition of stimulation (i.e., whether the proximity principle stands
of falls at that condition) depends on the degree to which the different uncertainties balance each
other.

The equilibrium principle

The proximity principle was proposed by the Gestaltists a part of an explanatory framework in
which a small number of principles would capture a great variety of perceptual phenomena. The
proximity principe is often cited as a staple of this framework because of its simplicity and alleged
universality supported by the argument from ecological statistics (Brunswik & Kamiya, 1953).

Now, having demonstrated that the principle does not generalize to perception of motion, we
should look for another explanatory framework. A strong candidate is the normative-economic
framework, because the theory of motion measurement derived in this framework (Gepshtein et al.,
2007) explains why spatial and temporal distances combine differently under different conditions of
stimulation. On this view, the proximity principle holds under some conditions of stimulation as
an accidental outcome of the optimization process whose goal is to minimize errors associated with
motion measurement.

Interestingly, the normative-economic framework is related to another basic idea of the
Gestaltists: the minimum principle (Hatfiled & Epstein, 1985). Empirical regularities, such as the
spatial proximity principle, have been viewed as instantiations of the minimum principle. Gepshtein
et al. (2007) demonstrated that the minimum of uncertainties — the “local optimal set” in their
theory — is also a balance of uncertainties. Since both the minimal set and the equivalence sets
(whose shapes imply the different regimes of motion perception) constitute equilibria of uncertain-
ties, we propose that the equilibrium principle, rather than the minimum principle, should serve as
a foundation of the new explanatory framework.

The two notions — equilibrium conditions and minimal (extremal) conditions — are closely
related also in the optimization theory. Consider, for instance, the case in which the minimal value



of a smooth function U(S, T ) : R×R→ R is searched for minima over a bounded domain. A minimal
(extremal) value of U(S, T ) is obtained at a condition (S∗, T ∗) where the following equilibrium holds:

dU(S∗, T ∗) =
∂U

∂S

∣∣∣∣
S=S∗, T=T ∗

dS +
∂U

∂T

∣∣∣∣
S=S∗, T=T ∗

dT = 0.

The notion of equilibrium is more suitable for analysis of stable systems than the notion of mini-
mum also from the perspective of optimization theory. Systems whose domains are closed sets and
whose global minima are reached on domain boundaries (where the minima are not equilibria) are
vulnerable to arbitrarily small perturbations, which makes the systems unstable. Thus, the equilib-
rium principle affords a more suitable framework for analysis of stable biological systems than the
minimum principle.

Appendix

We presently demonstrate that tradeoff of distance components is a necessary property of a proximity
metric. As we illustrated in Fig. 1, distances δ of a and b can be mapped onto each other by rotation
while preserving distance equality. This property is called rotation invariance. The only distance
metric for which rotation invariance holds is the Euclidean metric (Mendelson, 1974). However,
suppose we relaxed the requirement of rotational invariance. The Euclidean metric is a special case
of the power metric. Although rotation invariance does not hold in power metrics, the tradeoff of
distance components does. The tradeoff follows from the decomposability property of power metrics,
according to which a distance function must be a strictly monotonically increasing function in each
of its arguments (Suppes, Krantz, Luce, & Tversky, 1989). To formalize this idea we write the
distance between some space-time locations M and N as

δ(MN) = [ψs(Ms, Ns)r + ψt(Mt, Nt)r]1/r, (1)

where
• ψs and ψt are the spatial and temporal differences between locations M and N in space-time,

ψi = |φ(Mi)− φ(Ni)|, satisfying ψi(Mi, Ni) > ψi(Mi, Mi) whenever Mi 6= Ni,
• φ is a real-valued function (the “scale”) that represents a mapping between a physical location

and its perceptual counterpart, and
• r ≥ 1 is an integer.

We can introduce function F :

δ(MN) = F [ψs(Ms, Ns), ψt(Mt, Nt)], (2)

which must increase whenever ψs(Ms, Ns) or ψt(Mt,Nt) increases. According to decomposability, if
one of the arguments of distance function (e.g., the L-projection in Fig. 1B) increases, then distance
is preserved only if the other argument (K -projection in Fig. 1B) decreases. If the second argument
had not decreased, then the distance would necessarily have increased.

We now apply this argument to the elementary case of multistability in motion perception in
Fig. 2, where the spatiotemporal distances of competing motion paths are δ(ma) and δ(mb). Let
spatial and temporal coordinates of points o, a, and b be (Ns,o, Nt,o), (Ms,a, Nt,a), and (Ms,b, Nt,b).
Suppose that:

ψs(Ms,a, Ms,o) = Sa, ψs(Ms,b, Ms,o) = Sb, Sb = Sa + ∆S, and

ψt(Nt,a,Nt,o) = Ta, ψt(Nt,b,Nt,o) = Tb, where Tb = Ta + ∆T .

If paths ma, mb are in equilibrium, then we can apply Equation 2:

F [Sa, Ta] = F [Sa + ∆S, Ta + ∆T ]. (3)



From decomposability it follows that whenever ∆T > 0, the equilibrium of the two paths is possible
only when ∆S < 0.

Thus, if the spatial proximity principle generalizes to space-time, under power metric (1) or its
generalization (2), then a tradeoff of distance components between the dimensions of space and time
must follow. If in Fig. 1B we interpret axis K as space, and axis L as time, then the lengths of
spatial and temporal projections of perceptually equivalent spatiotemporal segments a and b will
trade off. Applied to the apparent-motion display in Fig. 2, Equation 3 becomes:

F [Sa, Ta] = F [Sb, 2Ta]. (4)

The equality of distances can be achieved only when Sb < Sa.
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