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Abstract 
 

A theory of memory retrieval is created that predicts shifts in the Point of Subjective Equality 
due to the cost of retrieving a standard stimulus magnitude from memory. The theory provides 
a method of estimating the cost of memory retrieval in units of the physical stimulus. Tests of 
the theory are provided by using a very early classic experiment from Werner Brown (1910). 
 
We feel our sensations. The immediacy, vividness, clarity, and sharpness of our feelings lend 
a precision to our sensations that suggests accurateness and reliability. Yet even the earliest 
psychophysical experiments produced laments about the failures of experimental subjects to 
conform to such expectations. Fechner (pp. 90-91, 1860/pp. 75-76, 1966) comments, 
 

When the method of right and wrong cases is used in weight-lifting 
experiments, the constant error is demonstrated when a large number of cases 
where the container with the comparison weight was lifted first is compared 
with an equally large number of cases where it was lifted second, while all 
other circumstances were the same. The ratio of right to wrong cases in the one 
instance will be quite different from the ratio in the other.   …I must admit that 
this quite unexpected occurrence of constant errors in these experiments was 
most puzzling to me …. 

 
The unexpected occurrence of “constant errors” sometimes called Time-Order Errors (TOE) 
or Space Order Errors was hardly limited to Fechner’s experiments. By 1910 the 
psychometric function, created by Urban (1906), also revealed constant errors. But in the 
psychometric function the evidence for the “constant error” became even more profound. A 
reanalysis of Brown’s 1910 data, shown in Figure 1, reveals the bizarre paradox that occurs 
when two stimuli of identical magnitudes are compared against each other. The standard 
weight of 100g was always lifted first by the experimental subject. One expects the 
comparison weight of 100g to be judged heavier or lighter with equal probability of 0.50. Yet 
Figure 1 shows that the estimated probability of reporting the second weight of 100 grams to 
be heavier than the standard of 100g equals 0.89. 
 
Furthermore, the Point of Subjective Equality, the value of the comparison stimulus 
generating responses of “heavier" with estimated probability 0.50, expected to occur at the 
comparison weight of 100g occurs instead at 95g. We will see that the 5g shift in the PSE to 
95 g from its expected position at 100g is a measure of the constant error. 
 
The many excellent investigations of the constant error (Hellström, 1979) laid the foundation 
for a broad range of possible explanations. While these hypotheses each merit attention, none 
predicts new phenomena, although many provide good fits to the data that gave rise to the 
hypothesis. 



RESPONSE PROPORTIONS AND θA ESTIMATES
BROWN (1910) N = 200 OBS / POINT
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Fig 1. Psychometric function and values of θA = ln(p/(1-p)) for heavier judgments with the 
Standard 100g weight always presented first. Experiment performed at University of 
California, Berkeley, Werner Brown (1910). 
 

 
An opponent process theory of memory retrieval 

 
To postulate a source of the “Constant Error” is to develop a more extensive theory of 
comparative processes than those based solely on stimulus representations. In particular the 
role of memory processes in the storage and retrieval of stimulus representations will provide 
a new foundation for analysis of psychophysical experiments.  
 
The addition of memory processes to the previous theory of judgments developed by Link 
(1975), Link and Heath (1975) and Link (1992) begins by including in the formulation 
processes for memory storage and retrieval. In particular let Po(ϕ) designate a Poisson 
distribution with parameter ϕ and for a time interval of size Δt define 

WS (Δt) ∼ Po(µ) to be the image of a Standard stimulus SS and 

WC (Δt) ∼ Po(λ) be the image of a Comparison stimulus SC where ∼ means “distributed as.” 
 
In previous formulations a subject’s decision was based on the accumulation of momentary 

values of D(Δt)  = WC (Δt) - WS (Δt) with E[D(Δt)]  = E[WC (Δt) - WS (Δt)] = λ - µ  the 
expected comparative difference within time unit Δt. The random walk formulations 
introduced by Link (1975) and Link and Heath (1975) proposed that momentary comparative 
differences are accumulated until a response threshold is first exceeded. 
 
Memory processes affecting the creation and storage of a stimulus image are important 
components in defining the stored image of a proximal stimulus. For the moment, however, I 
want to focus attention on the process of retrieval and its effects on the stored image of the 

Standard stimulus. In this regard let R(Δt) ∼ Po(ρ) be the effect of retrieval of the Standard SS. 



That is, during the comparison process the immediately available Comparison stimulus will 
be judged against the Standard as affected by the process of retrieval.  
 
In this regard let the process of comparison occurring during a unit of time Δt generate a 
discrimination statistic, 
 

D(Δt) = WC (Δt) – [WS (Δt) – R (Δt)].      (1) 
 

The meaning of retrieval conveyed in Eq 1 is that of an opponent process extracting the stored 
stimulus image. The comparative process itself is characterized as an opponent process 
creating differences between the Comparison stimulus and the retrieved Standard.  
 
As in previous formulations of the stochastic process of decision, the momentary values of 
D(Δt)  are accumulated until a response threshold at either values A or –A is first exceeded. 
The value A is associated with a decision that the Standard is larger, heavier, bigger, or in 
general greater than the Comparison stimulus. The response threshold at –A is for the 
alternative decision that the Comparison stimulus is smaller, lighter, or in general less than the 
Standard stimulus. This process is easily extended to include response bias that begins the 
decision process with an initial value equal to C. These ideas are explained more fully in Link 
(1992) Link and Heath (1975) or Shedlan (2006).  
 
These considerations lead to characterizing the decision process as a random walk beginning 
at a starting position C and  terminating at response threshold values of A or –A. The 
probabilities responding “Heavier” or “Lighter” are obtained by using the Wald Identity. This 
expected value theorem leads to solutions for both response probabilities and decision times 
in units of Δt. Letting D be the value of this stochastic process when the process terminates 
provides for a Wald Identity expressed as the expected value of exp(-θD) where θ is the non-
zero solution to  
 

E[exp(-θD(Δt))]  = 1 ,        (2) 
 
where exp designates e, the base of the Napierian logarithm. Therefore, 
 

E[exp(-θWC (Δt) + θWS (Δt) – θR (Δt)]   =  1.     (3) 
 
Since each of the components of Eq 3 is Poisson distributed Eq 2 is also written as 
 

exp(λ
exp(-θ)

 -1) + exp( μ
exp(θ)

-1) + exp( ρ
exp(-θ)

 -1) =    1.   (4) 
 
Solving Eq 4 for the non-zero value of θ gives, 
 

θ  = ln((λ + ρ)/μ) .         (5) 
 
 
Notice that the parameter for the Comparison stimulus can be represented as λ = μ + δ where 
δ is the difference between the mean values for the Comparison stimulus and the Standard. 



 Thus, 
 

θ = ln((μ + δ + ρ)/μ ) 
 

= ln((1 + δ + ρ)/μ ) 
 
which may be approximated by 
 

θ  ≈  (δ + ρ)/μ .         (6) 
 
To determine the probability p of responding “Heavier” the Wald Identity itself is evaluated at 
the values of A-C for the upper response threshold and A+C for responding “Lighter” at the 
lower response threshold. Because the Wald Identity is an Expected value theorem and only 
two possible values of D are possible, either A-C or A+C, 
 

E[e
-θD

]  =  pe
-θ(A - C)

 + (1-p)e
-θ(-(A + C))

,     (7) 
 

which yields, 
 

p  =   (1 - e
-θA

)/(e
θA

 - e
-θA

)  +  (1- e
-θC

)/(e
θA

 - e
-θA

) .   (8) 
 
Thus the probability of responding “Heavier” is determined by two components. The first 
term on the right-hand side is free of response bias, C, while the second term of the right-hand 
side depends on response bias. If there is no response bias Eq 8 becomes, 
 

p   =  1/(1+e
-θA

) ,        (9) 
 

the defining probability for a Logistic distribution function with parameter θA. 
 
Also, when there is no response bias C = 0 and Eq 9 may be used to provide an estimate of the 
unknown value of θA. In particular, 
 

ln(p/(1-p))  = θA .         (10) 
 

By substituting for θ in Eq 10 we have 
 

ln(p/(1-p))  = ((δ + ρ)/μ)A 
 

  = (δ/μ)A + (ρ/μ)A 
 
  = δ(A/μ) + ρ(A/μ).       (11) 

 
Predictions of the theory 

 
Using the Newtonian idea that small theoretical changes can be represented as a similarity 
transformation of small physical changes suggests replacing the unknown value δ by kΔS the 
physical difference between the Comparison Stimulus and the Standard multiplied by a 



constant of proportionality. This substitution provides a testable consequence for this theory 
of retrieval from memory because the left-hand side of the equation may be estimated from 
response proportions and the right-hand side is linear in ΔS. That is, 
 

ln(p/(1-p))  = kΔS(A/μ) + ρ(A/μ)      (12) 
 
is a linear equation with slope k(A/μ) and intercept ρ(A/μ). 
 
This predicted linear equation is a test of the theory and provides for estimation of unknown 
parameters. The response proportions from Brown (1910) are shown by the closed circles in 
Fig 1. These proportions yielded the estimates of ln(p/(1-p)) = θA shown by the open circles. 
The linearity shown by the solid line as a best fit to the estimates of θA as a function of ΔS is 
unquestionable. The linear equation proves to be  
 

ln(p/(1-p))  = (0.35)ΔS(grams) + 1.75.     (13) 
 
Now the estimates of slope (0.35) and intercept (1.75) can be used to determine the unknown 
cost of retrieval from memory, ρ, because the intercept value ρ(A/μ) divided by the slope 
value k(A/μ) equals ρ/k. Using the estimated slope and intercept values provides an estimate 
of  ρ = k5.0 grams. Retrieval from memory costs 5 grams times the constant of 
proportionality. 
 
As an additional observation, notice that the Point of Subjective Equality occurs for that value 
of the Comparison stimulus generating “Heavier” responses with probability 0.50. When 
p=0.50 the left-hand side of Eq 12 equals zero. Solving Eq 12 for the value of ΔS under this 
condition yields ΔS = -ρ/k. Thus the Point of Subjective Equality is shifted 5 grams from the 
value of a Comparison stimulus equal to the Standard. This is another test of the theory that 
must follow from the linearity in Eq 12.  
 
But the estimation of the cost of retrieval from memory is not the only aspect of the decision 
process to be estimable from this development. When the value of δ equals 0 the right-hand 

side of Eq 11 equals ρ(A/μ). Therefore1.75 = ρ(A/μ). Substituting for μ the value = kSS  

gives ρ(A/kSS) =  (ρ/k)A/SS or    
 

A  = 1.75 SS/(ρ/k) 
 

= 1.75 *100grams/5grams = 35.      (14) 
 

Thus, the known value of ρ/k = 5 and the Newtonian assumption regarding proportionality of 
the internal stimulus representation provides an estimate of A. While this value may seem 
quite large it applies to all comparison weight judgments used in this judgment process, 
weights ranging to 110g from 82 grams.  
 

Conclusion 
 
This first measurement of a memory process in units of the physical stimulus is a complement 
to previous psychophysical measures of mental phenomena. As space is limited only the 



beginnings of this development are presented here. Still, the explanation for the frequency of 
“constant errors” is now apparent from the fact that the first stimulus presented as a Standard 
stimulus must be stored in memory and then recalled when the second stimulus, the 
Comparison stimulus, is presented for judgment. Various experimental design features will 
influence the salience of the Standard, the availability of the Comparison, the duration 
between the offset of the Standard and the onset of the Comparison, all design features known 
to affect performance. Each of these must have its own effect in terms of opponent processes 
in the complete decision process. 
 
Brown was unable to measure response times in the lifted weight experiments. But, in 
formulating a theory of the psychometric function, Link (1978) analyzed both response times 
and response proportions for a number of classic psychophysical experiments. The theory 
presented above, sans the memory retrieval component, gave an excellent account of all the 
data including predicted relations between response times and response proportions. But, the 
earlier theory could not predict the shift in the Point of Subjective Equality found in those 
earlier experiments. Those shifts in the Point of Subjective Equality and the shift in the peak 
of the Chronometric functions are correctly predicted from the theory created here. 
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