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Abstract

Fechnerian scaling as developed by Dzhafarov and Colonius aims at imposing a metric on a 
set of objects based on their pairwise dissimilarities, e.g., discrimination probabilities. The 
objects may be perceptual stimuli or abstract categories. In this paper we apply Fechnerian 
scaling to a space of uni- and multidimensional logistic models used in item response theory 
for dichotomous data. The space of models is created by assigning to each ordered pair of 
models (A,B) a discrimination probability, taken to be the probability with which model B
fits, by some statistical criterion, a data set randomly generated by model A  at least as well 
as A  fits this data set itself. We then use (metric) multidimensional scaling to (isometrically) 
embed, for visualization purposes, the set of the item response theory models with pairwise 
Fechnerian distances in the Euclidean 2D  space.

Fechnerian scaling (FS; Dzhafarov & Colonius, 2006b, 2007) provides a theoretical
framework for deriving Fechnerian distances among objects (e.g., colors or signals) from 
discrimination probabilities or other measures showing the degree with which objects are 
discriminated from each other by what is generically referred to as a perceiving system (e.g., 
person or technical device). As described in Dzhafarov and Colonius (2006a,b) 
“nonpsychophysical” interpretations of the terms “object” and “perceiving system” are 
possible, designating, for instance, such purely conceptual entities as a statistical model and a 
computational model comparison procedure, respectively. Following these authors’ 
suggestion, in this paper we take as the object set a set of item response theory (IRT; Reckase, 
2009; Van der Linden & Hambleton, 1997) psychometric models, and a computational model 
comparison procedure based on the deviance information criterion (DIC; Spiegelhalter, Best, 
Carlin, & Van der Linde, 2002) as the perceiving system. In the statistical model selection 
literature (Burnham & Anderson, 2002; Myung, Forster, & Browne, 2000) such a sort of 
“behavioristic” approach to comparing statistical models has not been studied so far. 
Therefore, the general aim of this paper is to outline the scope of FS, an originally 
psychophysical “metric from discriminability” theory, for the exploratory and graphical
analysis of logistic IRT models. All computations in this paper have been performed in the 
freely available and powerful computing environment R (www.r-project.org).

Method

In order to be able to compute a Fechnerian metric on an abstract set of statistical models, 
what are the “discrimination probabilities” to actually begin with? Conceptually speaking, the 
entries of a data matrix of pairwise discrimination probabilities for a collection of statistical
models are to be representing the probabilities with which a model comparison procedure 
(such as the DIC criterion) “perceives” an ordered pair of a data-generating row model 
(belonging to what is called in FS the first observation area) and a data-fitting column model 
(in the second observation area) as comprised of two “different” models. The Fechnerian 
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distances computed from such a discrimination probability matrix then can be interpreted as 
dissimilarities among the statistical models “from the point of view” of the computational 
model comparison procedure (the DIC criterion).

However, the application of FS to model comparison is not straightforward as 
it may seem. There is a crucial difference between the classical paradigm of model selection, 
which we subsequently refer to as the “best-of” paradigm, and the experimental paradigm of 
pairwise presentations and same-different judgments in FS, which we briefly call the “same-
different” paradigm. In the best-of paradigm, stimuli (competing models) from a selection set 
are presented mutually, all at a time, and the perceiver (model comparison criterion) has to 
select a stimulus (model) that yields the “best” value “from the point of view” of the perceiver 
(the “best” model selection criterion, e.g., smallest DIC, value). This paradigm is different 
from and must not be confused with the “same-different” paradigm of FS.

Same-Different Discrimination Probability Matrix

A data matrix of same-different discrimination probabilities among competing statistical
models can be derived as follows (for an example see the Results and Discussion section):

(1) Simulate a large number of data sets for each of the row models (to attain reliable 
estimates of the discrimination probabilities).

(2) For any simulated data set, estimate the parameters for each of the column models 
(e.g., by Markov chain Monte Carlo (MCMC)) and compute the corresponding 
selection criterion (e.g., DIC) values.

(3) For any data-generating row model and each of the data sets simulated under this 
model, fix the data-fitting column model representing the data-generating row 
model as the baseline model, and increment the counter for any of the other column 
models whenever it outperforms the baseline model in selection criterion (DIC) 
value computed for the simulated data set – in case of a tie (equal DIC value), flip a 
coin. Divide these counts by the numbers of simulated data sets and form a 
corresponding row-models-by-column-models matrix of relative frequencies, where 
the entries on the main diagonal for the (column) baseline models are set to 0.50 .

(4) This matrix of relative frequencies is obtained under a “greater-less” paradigm of 
pairwise presentations with greater-less judgments. In “response” to every pair of 
stimuli (models) the perceiver (model comparison procedure) “judges” which of the 
two stimuli (models) is “greater” (has a smaller model selection, e.g., DIC, value). 
The obtained matrix of probabilities  (s,x) for greater-less comparisons among the 
row models s  and column models x  then can be transformed into a matrix of same-
different discrimination probabilities (s,x)  through (s,x)   (s,x)  0.50 . This 
choice of transformation can be deemed reasonable if one compares the principle of 
regular mediality for greater-less judgments with the regular minimality principle
for same-different judgments (see Dzhafarov, 2003; Dzhafarov & Colonius, 2006a).

It turns out that the same-different discrimination probabilities among the 
statistical models so obtained, in general satisfy the only property of the data required by FS, 
the property of regular minimality, in its canonical form (the minima, 0 , on the main 
diagonal; see the section Fechnerian Distances).

Item Response Theory

IRT provides statistical models that link dichotomous response data to a latent trait. In an 
achievement tests, for example, a number of examinees with unknown abilities may respond 
to a set of binary items, producing a “correct” or “incorrect” response, coded by 1 or 0 ,
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respectively. The subjects’ answers xij  0,1  can be modeled by what is called the item 
response function (IRF) of an item, which gives the probability of a correct response to the 
item as a function of person ability. In this paper we consider a set of (dichotomous) logistic 
IRT models. The IRF for the k -dimensional three-parameter logistic model, , is

PM k 3PL(xij 1 | !i )   j  (1  j ) 
exp(
! j

!
i   j )

1 exp(
! j
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i   j )

, where 
!
i  and ! j  are the k -dimensional 

(column) vectors of person i’s ability and item j’s discrimination (with scalar product ! j

!
i ),

respectively, and the scalars  j  and  j  denote the difficulty and pseudo-guessing parameters 
of item j , respectively. Restricting the parameters of this model yields the following special 
cases: k -dimensional two-parameter ( j  0 ) and one-parameter (  j  0  and ! j 

!
1) logistic 

models. We refer to the unidimensional versions of these models as 1PL , 2PL , and 3PL .

Parameter Estimation and Model Fit

The parameters of the logistic IRT models can be estimated using the MCMC Gibbs sampling 
technique (Casella & George, 1992; Geman & Geman, 1984; Patz & Junker, 1999a,b; Robert 
& Casella, 2004). Values representing the model parameters are sampled repeatedly from 
their full conditional posterior distributions. After the “burn in” phase the generated Markov 
chain attains its stationary distribution. The value taken as the MCMC estimate is the mean 
over a large number of successive iterations sampled. The model selection criterion that 
comes as a by-product of the Gibbs sampling is the DIC (Spiegelhalter et al., 2002). In 
accordance with classical model selection indices such as AIC and BIC the DIC penalizes a 
good fit by a value representing the number of used parameters. A model with the smallest 
DIC value is selected among the competing models (cf. Kang & Cohen, 2007).

Fechnerian Distances

The Fechnerian distances among the IRT models are derived based on the theory of FS as 
developed by Dzhafarov and Colonius (2006b, 2007). We provide a brief and by necessity 
schematic overview of the main concepts of FS. The only property of the data matrix   of 
(same-different) discrimination measures required by FS is regular minimality (RM). This 
property states that every row and every column of the  -matrix contains a single minimal 
entry, and an entry minimal in its row is minimal in its column. Given RM is satisfied, FS 
imposes a metric on the set of objects as follows. Let a X  b  denote a chain, a finite 
sequence, (a  x0 ,x1,…,xk ,xk1  b) of stimuli leading from stimulus a  to stimulus b . For 
such a chain we can compute what is called its psychometric length (of the first kind) 
L(1)[a X  b]  ((xi ,xi1) (xi ,xi ))

i0

k

 . The quantities (xi ,xi1) (xi ,xi )  are referred 

to as psychometric increments of the first kind. Among all such chains find a chain with 
minimal psychometric length, and take this minimal value of L(1) for the quasidistance Gab

(1)

from a to b  (referred to as the oriented Fechnerian distance of the first kind). Analogously, 
we can define the psychometric increments, (xi1,xi ) (xi ,xi ), psychometric lengths, L(2),
and the oriented Fechnerian distances, Gab

(2), of the second kind. It can be shown that 
Gab

(1)
 Gba

(1)
 Gab

(2)
 Gba

(2)
: Gab , and this metric Gab is taken for the “true” or “overall”

Fechnerian distance between the stimuli a and b .
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Results and Discussion

Discrimination Probabilities and Fechnerian Distances

Having simulated a data set, for example, under the 5-dimensional two-parameter logistic 
model, as the data-generating row model, we fix the column model M52PL  as the baseline 
model. The baseline model fitted to the simulated data set gives a DIC value, which the DIC 
values of the other column models are compared to. The comparison relates to whether or not 
a column model yields a smaller DIC value than the baseline model (see the section Method).

We present the matrix of probabilities for greater-less comparisons among the 
logistic IRT models (for 50  data sets simulated per row model, 20  test items, and a sample 
size of 200 ):

This probability matrix can be transformed into a matrix of same-different 
discrimination probabilities by the transformation described in the Method section:

This matrix satisfies RM (in the canonical form) and FS can be performed 
yielding the Fechnerian distances shown below:
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Graphical Representation

Classical multidimensional scaling (MDS; Borg & Groenen, 2005) can serve as a reference 
against which to consider FS (Dzhafarov & Colonius, 2006b). In the present paper we apply 
metric MDS to the computed Fechnerian distances to isometrically embed, for visualization, 
the space of the logistic IRT models in two-dimensional Euclidean space (Figure 1, left plot). 
Moreover, metric MDS on the Fechnerian distances can be compared with nonmetric MDS 
performed on the computed same-different discrimination probabilities (Figure 1, right plot).

Fig. 1. Two-dimensional Euclidean representations of the logistic IRT models for the 
Fechnerian distances (metric MDS, left plot) and for the same-different discrimination 
probabilities (nonmetric MDS, right plot). “Special case” relation for nested models of same 
dimensionality is displayed using dashed lines.

As can be seen from the left plot of Figure 1, the models M k2PL and M k3PL
are very close to each other. In the right plot, the two-parameter logistic models are more 
separated from the three-parameter logistic models of corresponding same dimensionality. In 
contrast, the multidimensional models M k1PL are located closer to the unidimensional 
models than to the more complex models M k2PL and M k3PL  in the left plot. In the right 
plot, instead, there is the “outlier” M51PL , which is located closer to the two-dimensional 
two- and three-parameter logistic models than to any of the other models. In both plots, the 
graphical representations reveal the hierarchy in (difference of) model complexity among the 
one-parameter logistic models; in terms of complexity, 1PL  ought to be “closer” to M21PL
than to M51PL . This is also reflected by the fact that a geodesic (of minimal psychometric 
length) chain in the set of all nine IRT models connecting object 1PL  to object M51PL  is 
given by the sequence of models 1PL,M21PL,M51PL . Altogether, in this application FS, as 
a method of preprocessing the dissimilarity data for the logistic IRT models, seems to
stabilize and improve on the MDS results (for a discussion of FS as a data-analytic tool see 
Dzhafarov, 2010).

Applying the FS procedure to evaluate dissimilarities among statistical models 
is an interesting new approach that proves valuable in being further pursued and investigated.
In-depth simulation studies have to be conducted, for instance including broader or different 
classes of statistical models and other model comparison criteria. In combination with MDS, 
moreover, the presented approach can allow for interesting applications of interactive 
graphical methods to be used for the exploratory analysis of multivariate statistical models.
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