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Abstract 

Measuring loss aversion requires the capability to measure subjective values of loss and gain 
on a common unit scale with a common known zero. The present work rests upon a previously 
established ratio model for the integration of uncertain gains and losses, which allows that 
value and probability weighting functions be derived on a common metrics with a common 
zero. Observed functional shapes concurred generally with those predicted by Prospect 
Theory (PT) and disagree with a view of probability evaluation as the major, if not exclusive, 
source of nonlinearities in decision under risk, as advocated, for instance, in SP/A. Loss 
aversion was found for some but not for all subjects, which agrees with the role given to 
differential risk preferences in SP/A. For those subjects who exhibited loss aversion, its 
magnitude was consistently found inferior to that typically estimated with PT. 

Loss aversion is a formal component of risk aversion in Prospect Theory (PT), both in its 
original (OPT: Kahneman & Tversky 1979) and cumulative (CPT: Tversky & Kahneman, 
1992) forms, referring to the alleged higher subjective value of losses in comparison with 
commensurate gains. It is modeled in the value function of PT by a kink at the zero reference 
point, resulting in greater steepness for losses than for gains. Conceptually, it is not to be 
confused with the curvature of the basic utility function (assumed concave for gains and 
convex for losses), which is a distinct component of risk attitudes (the probability weighting 
functions being still a third one) (Köberlling & Wakker, 2005). This manifests in the use of 
distinct parameters for “loss aversion” and for “curvature” in the PT representation of the 
value function (Tversky & Kahneman, 1992): 

                         x α                             if x  0             
         v(x) =                                              [α, β > 0; λ  tipically    > 1],                                        (1)

                         −λ (− x) β             if x < 0                                                  

with v(x) denoting the subjective valuation of outcomes x, α  e 
β the “intrinsic” curvature of 

the value function for gains and losses, respectively, and λ    the coefficient of loss aversion. 

This difference can also be functionally appreciated in that loss aversion (λ    ) is thought of as a 
source of risk aversion for mixed (gain-loss) prospects, while convexity of the value function 

 (indexed by β) constitutes a source of risk-seeking for pure loss prospects.  
Despite their formal independence, measurement of loss aversion is empirically tied 

up to the measurement of utility/value across the relevant domain of gains and losses, as made 
clear by the definition of loss aversion set forth in Kaheneman & Tversky (1979): 

 -v(-x) > v(x), for all x > 0,    or  equivalently:  v’(-x) > v’(x), if v has a derivative.        (2) 
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Legitimate comparisons of v(x) with -v(-x) obviously require that subjective values of gain 
and loss be measured on a common unit scale with a common known zero. Moreover, the 
condition “for all x > 0” requires that such measurement spans the domain of all relevant 
outcomes, which actually amounts to determining the entire curvature of the value function (a 
loss aversion coefficient could then be derived as the mean or median of the 

ratios )()-(- xvxv  across the full range of x). The noteworthy point is that measuring loss 

aversion (whatever the coefficient in use) and determining the functional shape of the value 
function share the same demanding measurement conditions; and that, through meeting them 
(a problem to which few solutions have been offered: see Abdellaoui et al., 2007), the 
assumptions concerning both loss aversion and utility curvature under PT can receive a 
simultaneous check. 

This paper illustrates the estimation of subjective losses and gains on a common unit 
ratio scale, and the further derivation of subjective value and subjective probability functions, 
by means of functional measurement (FM) (Anderson, 1981; 1982). The approach rests on a 
relative ratio model for the integration of uncertain gains and losses previously established on 
a mixed regular game situation (Viegas et al, 2009), writing shortly as G/(G + L) (G = gains; 
L= losses), and more fully as:  

       
)(+)(

=
PLxVLPGxVG

PGxVG
R ,                                                                                              (3) 

with R = response, PG = probability of gain; PL = probability of loss; VG = gain value, VL = 
loss value. The algebraic ratio structure of the model allows the estimation of functional 
values of G and L on a common ratio scale, which can then be used, via the embedded 
multiplicative model of probability x value, to derive functional estimates of value and 
probability. These estimates presume nothing as to the parametric forms of the value function 
(or, the case being, of the probability weighting functions) and rest exclusively on the 
empirical validity of the compound ratio model for this task. As such, provided the model is 
valid, they enable proper testing of conjectured functional shapes.                                            

Ability to adequately measure value provides of course more than a check of the 
“psychophysical” assumptions under PT. Comparative tests with influential theories which 
predict distinct functional shapes also become a possibility. SP/A (Security-
Potential/Aspiration) theory is one such case (Lopes, 1996; Lopes & Oden, 1999). SP/A 
distinguishes itself from PT on fundamental respects, starting with the notion of “risk”, which 
is of a motivational/attentional nature in SP/A and generally “psychophysical” (based on a 
principle of diminishing sensitivity) in PT. Importantly for present purposes, these differences 
reflect in predictions regarding the subjective functions of value and probability: (1) non-
linear weighting of probabilities is assumed in both theories, and modeled similarly under a 
rank-dependent or (de)cumulative weighting rule; (2) non-linearity of decisional probabilities 
is distinctively used in SP/A as an alternative to using curvature in the basic utility function to 
model “risk attitudes”; (3) loss aversion, which determines a concave inflexion of the value 
curve about the reference point in PT, has no formal status in SP/A: while the aspiration level 
in SP/A corresponds properly to a reference point, it is not incorporated in the value function 
and it operates on a separate principle of stochastic control (maximizing the probability to 
achieve an outcome at or above the aspiration level). Points (2) and (3) together make 
possible to largely boil down the differences between these two frameworks, as far as 
functional shapes are concerned, to the prediction of a linear value function by SP/A, in 
contrast to the S-shaped value function predicted by PT. Checking these alternative 
predictions is taken in the following as a case study. 
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Method 
!
Participants 

30 naïve undergraduate students at the University of Coimbra (aged 18 to 25) were enrolled in 
the experiments in exchange for course credits. 

Stimuli 

Stimuli consisted of schematic representations of one roulette-spinner games. One disk 
divided along its vertical diameter in two sectors, the left one associated with losses and the 
right one with gains, was presented. Left and right sectors were coloured to different extents 
in red and green, respectively, causing the probabilities that a spinning arrow determined a 
loss (PL) or a gain (PG) to vary independently from each other, with a complementary 
probability (1- PL - PL) of a null outcome. Variable monetary upshots were associated with 
the loss and gain sectors – value of loss (VL) and value of gain (VG), respectively. The overall 
situation could be described as a mixed (gain-loss) regular (p + q < 1) two-outcome game. 

Design and procedure 

Two similar game situations were produced: (1) The “value condition”, involving 2 
probabilities (0.25, 0.85) and 5 values of gain and loss (+/- 15, 150, 500, 2000, 7000 €); (2) 
The “probability condition”, involving 5 probabilities (0.05, 0.275, 0.5, 0.725, 0.95) and 2 
values of gain and loss (+/-150, 2000 €). In both conditions, the factorial combination of 
Probability x Value gives rise to an overall 10(expected gains) x 10(expected losses) design, 
with a 2(probability/respectively value) x 5(value/respectively probability) subdesign 
embedded within each factor. This nested structure allows to alternatively describe the main 
design as a 2(PG) x 5(VG) x 2(PL) x 5(VL) in the “value condition” (respectively, 2(VG) x 
5(PG) x 2(VL) x 5(PL) in the “probability condition”) and enables a two-layered approach 
addressing either the molar or the embedded design. Participants performed on both 
conditions, with presentation order counterbalanced. Their task was to judge on a bipolar 
graphic scale the dissatisfaction-satisfaction each game would bring them if they were forced 
to play it. Games were never played, but merely judged “as if” they were going to be played.  

Results 

One first concern was with the adequacy of the integration model (Eq. 3 above) to the 
specific tasks (value and probability conditions). Both graphs in Fig. 1, corresponding to the 
major two-way factorial plots, display cigar-like patterns consistent with the relative ratio 
model. Multiplicative fan-like patterns (not presented here) were observed in the embedded 
probability x value designs in both conditions, which were supported by statistical analysis 
(significant bilinear components of the interactions, with null residuals over the other 
components). Plots of VG x VL in the value condition, and of PG x PL in the probability 
condition, exhibited the typical barrel patterns the model led to expect. Evaluating the fit of 
the model (which, being nonlinear, requires iterative procedures) was done as in Viegas et al. 
(2009), and proceeded on an individual basis. Mean RMSD values obtained for the fits were 
of 0.064 in the value condition and of 0.062 on the probably condition. Taking altogether, the 
basic integration model appeared as well warranted in both tasks.  

As a characteristic feature of FM, parameter estimation is simultaneous with the 
empirical process of establishing the model’s validity, rather than simply assuming it.  
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Figure 1. Factorial diagrams corresponding to the 10 (Expected Gains: G1 to G10) x 10 
(Expected Losses: L1 to L10) overall design (increasing marginal means of Gains in the 
abscissa).  

Estimates of Gi and Li (the molar parameters) obtained in the process of fitting the model 
could thus be taken as legitimate, granted the validity of the relative ratio rule. Such estimates 
are on a ratio scale with an arbitrary unit (see Viegas et al., 2009, for details; also Anderson, 
1982), thus affording meaningful comparisons between G and L on a common unit scale with 
a known zero. They were used as the basis for the subsequent derivation of functional 
measures of probability and of value, at the ratio level (no common unit across factors, 
though), resting now on the nested multiplicative rule (see. Viegas et al., 2009, for procedure; 
and Masin, 2004, on achieving ratio measures under the IIT multiplying model).  

10 estimates of subjective value (5 for gains, 5 for losses) were derived this way in the 
value condition, and 10 estimates of subjective probability (5 for gains, 5 for losses) in the 
probability condition. Since a physical metrics of the stimuli was available (amount of money 
for “value”, portion of coloured area for “probability”) proper psychophysical functions of 
value and of probability could be plotted. These are presented in Figures 2 and 3, with 
adjusted trend lines and the corresponding parametric equations. 

Figure 2. Psychophysical functions of Value.  Functional estimates (aggregated) derived from 
the relative ratio model are pitted against monetary values. Points correspond to empirical 
data, lines to best fitting parametric trends. 
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Figure 3. Psychophysical functions of Probability. Estimated functional values (aggregated) 
are on the ordinate and coloured proportion (in percentage) of the gain (loss) sectors on the 
abscissa. Points correspond to empirical data, lines to adjusted trends. 

Functional Shapes 

Figure 2 reveals pronounced non-linearity of the value curve, which appears concave for 
gains and convex for losses, thus S-shaped in all. Power functions provide the best fit to data. 
Both findings agree with PT and disagree with the assumption of linearity made in SP/A. A 
noteworthy point is the closeness of the power exponents estimated for gains and for losses. 
Since adjustments were performed on an individual basis, a paired-t test could be done which 
provided a null result (p = 0.596). This concurs with PT’s assumption that the value function 
has a similar curvature for gains and for losses (even if the values found are – on the mean – 
considerably lower than the 0.88 typically taken as a reference).  

Figure 3 illustrates an overall convex shape of the probability functions, consistent 
with the assumptions of OPT. Due to lack of a sensible way of mapping functional estimates 
on the range of 0 to 1, the underweighting/overweighting of probabilities cannot be addressed, 
and considerations must be limited to functional shapes. An exponential function does a good 
job at fitting the data. However, closer inspection shows the first data point to lie below, and 
the second and third data points to lie above the fitted line in both graphs (gains and losses), a 
suggestion of mild initial concavity which concurs with the inverse S-shape proposed in CPT 
(this tendency was also observed and widespread at the individual level) 

Loss aversion 

Loss aversion (LA) was computed as the mean of the ratio v’(-x)/v’(x) (i.e., between the 
values of the derivative of the “utility” function for matched monetary losses and gains). The 
found mean was 1.18, a value much lower than the standard 2.25 assumed in PT, and not 
significantly different from 1, which would signal the absence of loss aversion (p = .07). The 
picture was however quite different at the individual level. Classifying subjects as “loss 
averse” (LA > 1) and “gain seeking” (LA < 1) resulted in mean coefficients of 1.38 and 0.85, 
respectively, for the two groups. Both coefficients were significantly different from 1 (p = 
0.04, p = 0.02) as well as from each other (p = .023). Loss aversion was thus the case for a 
majority of subjects (≈ 64%) who focused more on losses than on gains, while ≈30% (gain 
seekers) did the exact opposite, and ≈ 6% accorded an even treatment to gains and losses.
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Discussion 

Measuring value/utility has proven a difficult problem under complex models such as 
PT, largely because of the assumed interference of other factors such as probability weighting 
and loss aversion. This work illustrates the possibility of desintegrating these different 
components using the framework of IIT and Functional Measurement, without imposing a 
priori constraints on the shape of either the value or the probability function. The results were 
consistent with the functional forms defended in PT, and disallowed the claim made in SP/A 
of a linear (or quasi-linear) value function. Similar curvature parameters were observed for 
gains and losses both in the value and the probability functions. This disagrees, in the later 
case, with PT, but similar results were found, for instance, by Abdellaoui et al. (2007) with a 
rather different methodology. As regards loss aversion, a non-negligible percentage of gain-
seeking (the opposite of loss aversion) subjects was found, which is more in keeping with a 
dispositional account of loss aversion, as in SP/A, than with making it a structural feature of 
the value function, as in PT.  
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