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Abstract

Weber’s law is one of the most fundamental properties of visual processing. This raises the 
question of why and how the underlying neural circuitry has developed. Here we propose that 
the emergence of Weber’s law can be seen as a by-product of a more general evolutionary 
strategy for the development of sensory systems: the adaptation to the statistical regularities 
of natural scenes. Many basic properties of early vision have already been successfully 
explained within this framework. Here we extend this approach by measuring the joint 
statistics of neighbouring pixels of natural images under varying illumination conditions. We 
demonstrate that a linear decorrelating transform would leave significant statistical 
dependencies between the responses. We then show that the removal of these dependencies 
can be achieved by learning from the statistics a nonlinear gain control mechanism which can 
be implemented as ROG (ratio of Gaussian) filter. Weber’s law is a direct consequence of this 
nonlinear operation. One single basic principle, the reduction of statistical dependencies 
between sensory messages, thus seems to be sufficient to derive all essential processing 
properties of early vision.

Investigations of the relation between natural scene statistics and the neural mechanisms of 
early vision have revealed that many basic properties, such as the frequency and orientation 
selectivity of neurons in the visual cortex, can be explained as an information-theoretically 
optimized adaptation to the statistical redundancies of the natural environment (for review 
see, e.g., Olshausen and Field, 2004, Simoncelli, 2003, Zetzsche and Krieger, 2001). This 
approach can also be extended to more complicated cortical processing properties, as in 
complex cells or in the extra-classical receptive field surround (e.g., Lyu and Simoncelli, 
2009, Zetzsche and Nuding, 2005). According to the information-theoretic approach the 
neural operations represent a transformation of the state space coordinates which matches the 
representation to the structure of the multivariate probability distribution. One major criterion 
for a good match is the reduction of the statistical dependencies (ideally: statistical 
independence). Often this can be achieved by linear transforms, as in independent component 
analysis (ICA), but some statistical dependencies require nonlinear operations. Here we 
investigate whether this general goal of statistical independence can also explain how the 
nonlinear operations underlying Weber’s law have developed in the visual system. 

Natural Scene Statistics and Linear Filter Decompositions 

For this, we first measured the joint statistical distribution of the responses of neighbouring 
retinal receptors to natural scenes with varying lightning conditions. 12 images were 
randomly taken from a database of natural images (van Hateren and van der Schaaf, 1998) 
under exclusion of non-natural objects or portions of sky. Before the statistics 
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were computed, the images were converted to an absolute intensity scale by a mapping which 
takes into account the aperture and the exposure time used in recording each image. The 
resulting probability density function (pdf) of two neighboring pixels exhibits a typical shape: 
a high correlation between the pixel values and a systematic outward widening of the 
distribution towards the higher intensity values (Fig. 1a). Obviously, there exist strong 
statistical dependencies (redundancies) in the signal.

How can the sensory system get rid of them? A classical method to for this is a 
linear decorrelating transformation. The crucial operation for decorrelation is bandpass 
filtering, which in early vision is achieved by lateral inhibition, commonly formalized as 
Difference Of Gaussian (DOG) filter operation with )()()( 1 xlxlxd iii +−= where il  and 1+il
are the image signal filtered by Gaussians ig  and 1+ig  with different spatial spread (Fig. 1b).

Decorrelation can be seen as a “rotation” of the coordinate system (Fig. 1c). 
However, this rotation by the linear transformation can only exploit the statistical 
dependencies of second order but cannot provide a separation of the higher-order 
dependencies which are reflected in the systematic dependence of the variance of the DOG-
response id  on the local average luminance 1+il  (Fig. 1c). Note that the complete pdf has 
more than the two dimensions shown and that the multivariate statistical dependencies extend 
both across spatial positions and spatial frequencies (spatial scales). Regarding position it is 
easy to see that the effect shown in Fig. 1c also holds for spatially neighboring samples of the 
DOG response )(xdi . Since the average local luminance )(xli  varies only slowly over 
position x , the variances of a sample )2( 0 xxdi ∆−  and of its neighbor )2( 0 xxdi ∆+
depend both in the same way as shown in Fig. 1c on )( 01 xli+ . So although the signal )(xdi  is 
quite well decorrelated in the second-order sense, its samples )2( 0 xxdi ∆−  and 

)2( 0 xxdi ∆+  still have the shown substantial statistical dependencies. 
For understanding the statistical dependencies across frequency we can 

decompose the complete signal )(xL  into a DOG pyramid (Burt and Adelson, 1983). For 
resolution level (or scale) i we can write 
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Fig. 1. (a) Joint pdf )2,1( LLp  of two neighboring pixels (with )(2),(1 00 xxLLxLL ∆+== )
in scenes with spatially and/or temporally varying illumination (contrast enhanced). 
(b) Linear lateral inhibition (DOG). (c) Decorrelated joint statistics of linear DOG. 
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Here id denotes a DOG channel with resolution i  and jd  the sum of the other DOG 
channels with lower frequencies ( )1+≥ ij , which turns out to be equivalent to the local mean 

1+il . The statistical dependencies between a channel id  and the other channels jd  in the 
DOG representation can hence also be described by the two-dimensional pdf ),( 1+ii ldp  in 
Fig. 1c. Together this demonstrates that the multivariate pdf of natural images is not separable 
in linear Cartesian coordinates (neither by PCA or ICA).

Can we understand why the statistical structure arises which causes the deficit 
of linear decorrelation? This process is illustrated in Figure 2. First, it is important that the 
retinal input L(x) results from a nonlinear, multiplicative combination of an illumination 
component I(x) and an reflectance component R(x), i.e. L(x)=I(x)R(x). Second, natural scenes 
are illuminated by different illumination functions Ik(x), which vary across space and time. 
Fig. 2a shows a typical configuration with spatially varying illumination. The grain in the 
sack is illuminated partially by direct bright light, and partially by indirect dim light. This 
varying illumination will cause that similar or even identical local reflectance functions 

)()( xxRxxR jjii ∆+≈∆+  (in our example the homogenous grain which is identical in the 
bright and the dark area) are transformed into different luminance functions 

)()( xxLxxL jjii ∆+≠∆+ . The corresponding statistical contributions ( ))( xxLp iii ∆+  and 
( ))( xxLp jjj ∆+  are scaled versions of each other, and constitute together the pdf p(L(x)) (in 

our example the pdf )2,1( LLp  of neighbouring pixels from both areas of the grain region 
(Fig. 2b)). The principle is schematically illustrated in Fig. 2c. The combination of various 
scaled subpopulations in the final pdf is the reason for the statistical dependency of the DOG 
response di on the mean that has been revealed in Fig. 1c. The crucial point is that a linear 
decomposition cannot separate the nonlinear interaction of the reflectance component and the 
illumination component (Fig. 2d). The linear response is proportional to the linear local 
differences in the image. The response to the grain texture is hence smaller in the dimly 
illuminated region than in the bright region, i.e. it is dependent on the illumination. It is 
sometimes assumed that a mere suppression of the low frequencies by a linear band-pass 
filter, or similarly, a sole shift of the operating point is already sufficient for illumination 
invariance but this is clearly not the case (Fig. 2d).  

Nonlinear Removal of Statistical Dependencies 

The removal of these dependencies requires a nonlinear transformation. A suitable locus for 
an appropriate nonlinearity is the inhibitory interaction, labeled as Inh in Fig. 1b. We thus 

L1

L2

L1
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Fig. 2. (a-c) The influence of varying illumination on the pdf )2,1( LLp  and (d) the response 
of a linear inhibition scheme (DOG).
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have investigated whether the biological system can learn an appropriate nonlinear form of 
this inhibition on the sole basis of the statistical regularities of natural scenes. For this we 
again used the images from the van Hateren database and optimized the nonlinear interaction 
for the inhibition in order to minimize the statistical dependencies. The nonlinear operation 
we optimized can take various shapes, ranging between the extremes of a linear and a divise 
behavior, with a continuum of intermediate forms in between. 

The learned inhibition is not longer a linear subtraction as in the DOG model 
(Fig. 3a) but becomes stronger in proportion to the low-resolution luminance 1+il (Fig. 3b). 

Evaluation shows that it comes very close to an exact division, i.e. [ ]
1

1,
+

− =≈
i

i
iii l

lrllInh .

This is reasonable because the crucial factor that causes the statistical dependencies in the 
linear setting is the direct proportionality of the filter response to the local mean 1+il . The 
nonlinear transform has to get rid of this proportionality, i.e. it has to reduce the gain of the 
system in proportion to the local mean. The learned inhibition thus represents an adaptive 
gain control mechanism and a formalization of such a mechanism is a divisive interaction by 
a “ratio of Gaussians” (ROG) operator (Sperling, 1970, Zetzsche and Hauske, 1989). (A 
logarithmic transducer function would formally have a similar effect but would be much less 
suited for the processing of a wide dynamic range). The resulting joint pdf does no longer 
exhibit the statistical dependency but is approximately separable, which amounts to statistical 
independence of the components (Fig. 3c). In addition, such a nonlinear operation also can 
successfully recover the reflectance component (Fig. 4). 

The nonlinear transformation that can remove the statistical dependencies 
yields Weber’s law as a direct consequence. It produces an input-output relation in which a 

Fig. 3. Comparison of linear and learned nonlinear inhibition: (a) linear inhibition (DOG), (b) 
nonlinear inhibition learned by minimizing statistical dependendencies in the neural 
representation, and (c) joint pdf resulting from the divisive nonlinear inhibition. 
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Fig. 4. Processing of a scene with varying illumination by nonlinear gain control. The operator 
can separate the influence of the illumination by responding only to the reflectance pattern
(which is a homogeneous texture of grain in this example, cf. Fig. 2d). 
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fixed output increment is caused by all those inputs for which the input increment ∆L is 
proportional to the local mean L0. This is just Weber’ s law ∆L/L0=const. (Fig. 5). 

Discussion

In this paper we have investigated how a biological system can make use of the specific 
statistical dependencies of natural scenes to learn a nonlinear inhibitory processing scheme 
which (i) minimizes the statistical dependencies of the nonlinear filter response on the local 
mean lumincance, (ii) is able to approximately separate the reflectance component from the 
illumination component, and (iii) produces Weber’s law. In an earlier investigation (Röhrbein 
and Zetzsche, 2002) we have not explicitly addressed the learning of the nonlinear inhibition 
from the statistics, but we already observed that the ROG response is statistically independent 
of the local mean luminance. This is in agreement with a similar observation by Mante et al. 
(2005), who found that local rms contrast and local mean luminance are statistically 
independent in natural images. This accordance seems reasonable given that the nonlinear 
ROG response and the rms contrast are closely related. However, the conceptual status of the 
entities being studied is different in the two approaches. Simply said, what in our approach is 
an empirical result of our statistical investigations is in their approach a definition of a 
variable. Our aim is to derive the structure of the neural transformation from the specific form 
of the statistical dependencies in images. (Here we addressed luminance gain control, for 
cortical contrast gain control see Schwartz and Simoncelli (2001) and Zetzsche et al. (1999)). 
Mante et al. focus on the relation between the mechanisms, and test the hypothesis that, due 
to the statistical independence of the measured variables, the two gain control mechanisms 
should operate independently of each other. This is plausible, given the fact that the statistical 
dependencies that are exploited by contrast gain control differ from those analysed here. 
Finally, it should be noted that there remain spatially distributed statistical dependencies 
between luminance and contrast (Lindgren et al., 2008). 

In conclusion, Weber’s law describes a fundamental nonlinearity of the visual 
system. Here we suggested a simple explanation for the development of the underlying neural 
machinery: Substantial statistical redundancies are a typical characteristic of sensory 

L(x)=R(x)I(x)R(x
)

I(x
)

(a)

(b)

INPUT
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DOG
RESPONSE

ROG
RESPONSE

Fig. 5. Nonlinear gain control by the ROG mechansim and Weber's law. (a) The input L(x)
results from a multiplicative combination of the reflectance R(x) and the illumination I(x).
(b) A linear DOG operator responds in proportion to the linear signal differences. The 
nonlinear ROG operator yields constant response increments for input ratios ∆L/L0=const.,
i.e., yields Weber’s law. Below is a second example with steps as input.
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messages, and the exploitation of such redundancies seems to be a universal strategy for an 
efficient representation of sensory information. Our statistical analysis has shown that there 
exist significant statistical dependencies between early sensory signals which cannot be 
exploited by classical linear decorrelation schemes. However, the system can learn from these 
dependencies how to develop a nonlinear gain control that yields approximate illumination 
invariance and Weber’s law. Like other basic visual functions, Weber’s law can thus be seen 
as a consequence of one single principle: the visual system seeks to exploit the statistical 
redundancies of natural scenes. 
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