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ABSTRACT 
The theory of comparative judgment proposed by Link (1975, 1992) received various tests 
and confirmations through the joint analysis of response times and response probabilities. 
These are strong tests of the general character of such a stochastic process. However this 
paper creates and applies a new approach to testing the prediction that the form of choice 
probabilities is logistic. 
            
At the foundation of psychophysical theories of comparative judgment are assumptions 
regarding the characterizations of stimuli and how these are used to form a judgment.  
Fechner (1860, see Link 1994) represented stimuli by internal variables postulated to have 
Gaussian distributions because these distributions captured the 19th century idea about how 
error disturbed measurements, whether physical or mental.  

The idea was sufficiently powerful to lead Fechner into a theory of comparative 
judgment that created the basis for experimental psychology (Link, 1994) as well as statistical 
hypothesis testing. The theory supposes that a particular internal stimulus value is compared 
to an internal threshold or criterion. Whether the internal stimulus value is above or below this 
threshold determines the choice response made by the subject. However, the theory was not 
able to account for the relations between response time and response probability, in part 
because the theory itself has nothing to do with the unfolding of a decision in time. What tests 
there are showed failure of the assumption that distance from the threshold or criterion 
determined response time. (e.g., Thomas and Myers, 1968). 

The consideration of time-dependent mental processes begins with an entirely 
different view of the mechanism for creating a choice between two alternatives. In keeping 
with the general ideas introduced by Abraham Wald (1947) in the sequential analysis of 
statistical hypotheses Link introduced a distribution-free sequential theory of comparative 
judgment (Link and Heath, 1975). The theory’s strength was in predicting relations between 
response time and response probability. Many tests showed the theory to provide an accurate 
portrayal of how subjects made judgments in many choice experiments. 

Link (1978) showed that the response probabilities predicted by the theory had the 
form of a logistic function. This particular function was used by statisticians to fit data. But 
the source of the logistic equation was unknown. Its close fit to results in many different 
scientific areas suggested that there must be a common basis for its frequent appearance. The 
surprise was that this function describing choice probabilities was an outcome of the random 
walk theory of statistical hypothesis testing due to Wald (1947) and extended by Link (1978).  

This logistic function depends on two parameters and defines the probability of 
choosing between one of two response alternatives as 

 ! = ""#$%&'        (1) 
 

where θ is a measure of discriminability and A is the accumulated amount of comparative 
difference between the stimulus and a referent needed to trigger a response. The derivation 
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and proof that this logistic function is a consequence of random walk theory is found in Link 
(1978).  

The parameter θ that captures discriminability is derived from the formal analysis of 
the underlying stochastic accumulation of comparative differences through an application of 
Wald’s Identity. Although Link (1978) derived the logistic response function as a 
consequence of bounded random walk theory, the parameter θ remained a discrimination 
parameter without formal relation to the particular nature of stimuli under judgment. In this 
sense the derivation did not depend on the form of the underlying probability distributions 
thought to characterize the stimuli.  

A simple calculation shows that the unknown parameters θ and A are jointly 
determined by computing 

 ln [ln ! "#$"%] =  &'( + &').        (2)
  
This addition of parameters, even on a logarithmic scale, suggests performing experiments 
designed to cause independent changes in θ and A in order to test whether the derived logistic 
form of the choice probabilities results from such experimental manipulations. The analysis of 
such an experiment is the focus of this paper. 

The experiment occurred before these theoretical results were known. Link and 
Tindall (1971) and Link (1971) required subjects to compare sequentially presented horizontal 
line segments on a computer controlled display, and to judge whether a comparison line was 
the same or different from a fixed standard. Another change in performance resulted from 
requiring the subjects to respond under three different instructions regarding the speed and 
accuracy of their responses. Subjects were to respond as accurately as possible, to “Beat” a 
460 msec response time deadline while being as accurate as possible, and to “Beat” a 260 
msec response time deadline while being as accurate as possible.  

Four well-practiced subjects made choice judgments in 60-trial blocks within which 
the size of the comparative difference remained fixed as did the instructions on speed and 
accuracy. Within each block the comparison stimulus was either the same or different from 
the 2cm standard on 50 % of the trials. The first ten trials, with 50% same and 50% different 
comparisons, were treated as practice and do not enter into the analysis below. Each subject 
used the same speed and accuracy conditions during a day in which eight blocks of trials 
totaling 8*50=400 test trials yielded 100 trials for each of four different sizes of comparative 
difference, .1cm, .2cm, .3cm and .4cm. Each speed-accuracy condition ran for four successive 
days. Thus each subject contributed 1600 judgments for each speed-accuracy condition 
consisting of 400 judgments for each level of stimulus difference. The total number of test 
trials is 19,200. 

The judgments proved to be quite similar in the probabilities of a correct response 
regardless of whether the response was “Same” or “Different” from the standard 2cm line (cf, 
Link, 1992, pp 214-223). For this reason, and to keep with the results as reported by Link and 
Tindall (1971), the response probabilities presented below are for the probabilities of a correct 
response whether the judgment was “Same” or “Different.”  Each row of Table 1 corresponds 
to a speed-accuracy condition for which there are a total of 6400 observations. Each column 
corresponds to a fixed amount of stimulus difference and a total per column of 4800 
observations. As might be expected various amounts of stimulus difference and the speed-
accuracy conditions caused large changes in the response probabilities. 
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Table 1: Observed and Predicted Correct Response Proportions 
 1cm 2cm 3cm 4cm 
Speed-Accuracy Obs.       Pred. Obs.       Pred. Obs.      Pred. Obs.       Pred. 

ACCURACY .804       .834 .919        .918 .971       .965 .988        .983 
460 msec .731       .734 .818        .807 .876       .877 .905        .916 
SPEED .609       .595 .630        .637 .676       .684 .714        .720 
 

The question about the adequacy of the logistic equation to describe these performances is 
best answered by analysis of individual subject data, rather than an analysis of the average 
data provided in Table 1. The same calculations can be applied in either case. To illustrate the 
ideas the probabilities in Table 1 are used below. Then the method will be applied to all four 
subject’s individual results. 

The additivity of effects due to θ and A requires a new form of analysis. By computing 
ln[ln(P/(1-P))]=lnθ + ln(A) all response proportions within each cell are a consequence of a 
sum of values dependent upon θ and A. Presumably these parameters depend upon the 
amount of stimulus difference, θ, and the amount of comparative difference, A, required to 
create a response. Thus, for each of J columns there is a value of θj. However, noting that 
these values may be averaged across a row i, (i=1,…,I) yields an average for row i of, 

 !" ∑ [ln ($%"%&! ) + '((Ai)] = ln(Ai) + θ*       (3) 
 

where θ* = ln(θ1θ2 … θJ)1/J the logarithm of the geometric mean of the unknown θ values. 
Similarly, averages down a column produce, 
 !) ∑ [ln ($%)*&! ) + '((Ai)] = ln(θj) + A*      (4) 

 
where A* = ln(A1A2 … AI)1/I the logarithm of the geometric mean of the unknown values of 
A. The overall mean, M, equals θ* + A*. These ideas are shown in Table 2. Here are the 
various probabilities in Table 1 converted to ln(ln()) values with averages shown in the 
penultimate right-hand column and the next to the lowest row. The overall mean M = 0.335. 
 

Table 2 ln(ln(P/(1-P))) 
1cm 2cm 3cm 4cm Average Estimate of 

ACCURACY 0.345 0.887 1.256 1.484 0.993 θ* + lnAACC 

460 0.000 0.407 0.670 0.813 0.473 θ* + lnA460 

260 -0.814 -0.631 -0.307 -0.089 -0.460 θ* + lnA260 
Average -0.157 0.221 0.540 0.736 0.335 =M=θ*+A* 

Estimate of lnθ1 + A* lnθ2 + A* lnθ3 + A* lnθ4 + A* 
 
Although all the parameter values are unknown, a test of the logistic equation is still possible. 
Note that the sum of averages for a particular row and column (i, j) gives 
 $∗ + '(,* + ,∗ + '($% =  '(,* + '($% +  $∗ +  ,∗ 

= '(,* + '($% + -.      (5) 
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Figure 1. Response probabilities observed and predicted for the experiment of Link and 
Tindall (1971) employing speed-accuracy instructions and changes in discriminability. 
 
Thus, by subtracting M from the sum of a row and column averages and exponentiating the 
result, the unknown value of θjAi is estimated. These may then be used in Equation 1 to 
predict the response probabilities. If the logistic model is correct then there should be a close 
correspondence between the predicted and observed probabilities. Notice too that this is not 
trivial, the same value for θ is assumed to apply across the speed-accuracy conditions and a 
fixed value for A is assumed to apply across values of stimulus difference. 

For the purpose of illustration Table 1 includes predicted values for these marginal 
response probabilities, and the fit is quite good. However, a better test is to apply the method 
to each subject separately and then examine the overall comparison between observed and 
predicted values. These values for the 12 probabilities for each of the four subjects appear in 
Figure 1. The linear equation of best fit with fixed zero intercept shows good agreement 
between observed and predicted response probabilities. The average deviation from predicted 
values is 0.002. 

The good agreement between predicted and observed probabilities suggests carrying 
this analysis a step further. Notice that each row or column average may have the value M 
subtracted from it to leave only those parameters related to the experimental condition 
assigned to either the row or column. That is, for column 1: 

 
Average Column 1 – M = A* + lnθ1 – (θ* + A*) = lnθ1 – θ*.   (6) 
 

This value equals the logarithm of θ1 minus the logarithm of the geometric mean of the θs. 
Exponentiating this result yields the value of θ divided by the geometric mean of the theta 
values – a relative measure for θ.  

These values for the average results and for averages of subject’s relative parameters 
are shown in Figure 2. These are relative values of the discrimination parameter θ for each 
level of stimulus difference, .1cm, .2cm, .3cm and .4cm. Of course these values increase as 
the size of the stimulus difference increases. 
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Figure 2. Relative estimates of the effects of stimulus difference on performance. The first 
column corresponds to .1cm. Averages of subject estimates agree closely with those obtained 
from the average results in Table 1. 
 
The real question is how these values are related to the physical values of the stimuli being 
compared. The fact that this ratio is a dimensionless quantity suggests that the numerator and 
denominator be estimated by using the actual stimulus values. 
 There are no physical values for the parameter A, thought to change under  changes in 
the speed-accuracy instructions given the subjects. The physical parameters corresponding to 
the instructions may be related to a subject’s perception of how much stimulus difference 
must be accrued to make a response or in some way to the time to respond. But at this time 
the association with the relative speed-accuracy parameters shown in Figure 3 is unknown. 
The idea that the amount of accumulated stimulus difference needed to respond is the measure 
of the parameter A suggests that A should increase as the speed deadlines are relaxed, and this 
is quite clear in Figure 3. 

 
 

Figure 3. Relative values of the parameter A controlling the average duration of responses. 
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This next step toward understanding the relationship between the theoretical 
parameters and the physical values that underlie them requires a deeper analysis of the 
underlying probability distributions representing the stimuli and the particular mechanism for 
creating a comparative difference. The small amount of space available here does not allow 
for this extended discussion.  

However, these tests of the predicted logistic representation of response proportions 
seems sufficiently strong to provide excellent support for the sequential theory of 
psychological discrimination first proposed in Link and Heath (1975). 
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